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ABSTRACT
The increasing number of transiting exoplanets sparked a significant interest in discovering
their moons. Most of the methods in the literature utilize timing analysis of the raw light curves.
Here we propose a new approach for the direct detection of a moon in the transit light curves
via the so-called scatter peak. The essence of the method is the evaluation of the local scatter
in the folded light curves of many transits. We test the ability of this method with differ-
ent simulations: Kepler ‘short cadence’, Kepler ‘long cadence’, ground-based millimagnitude
photometry with 3-min cadence and the expected data quality of the ESA planned planetary
transits and oscillations of stars (PLATO) mission. The method requires ≈100 transit obser-
vations, therefore, applicable for moons of 10–20 d period planets, assuming 3–5 year long
observing campaigns with space observatories. The success rate for finding a 1REarth moon
around an 1RJupiter exoplanet turned out to be quite promising even for the simulated ground-
based observations, while the detection limit of the expected PLATO data is around 0.4REarth.
We give practical suggestions for observations and data reduction to improve the chance of
such a detection: (i) transit observations must include out-of-transit phases before and after
a transit, spanning at least the same duration as the transit itself, and (ii) any trend filtering
must be done in such a way that the preceding and following out-of-transit phases remain
unaffected.

Key words: methods: numerical – techniques: photometric – planets and satellites: general –
planetary systems.

1 IN T RO D U C T I O N

The number of known transiting exoplanets is rapidly increasing,
which has recently inspired significant interest as to whether they
can host a detectable moon. Although there has been no such exam-
ple where the presence of a satellite was proven, several methods
have already been investigated for such a detection in the future.
The most important methods evaluate the timing of transits, e.g.,
barycentric transit timing variation (TTV; Sartoretti & Schneider
1999; Kipping 2008), photocentric transit timing variation (TTVp;
Szabó et al. 2006; Simon, Szatmáry & Szabó 2007), transit dura-
tion variation (TDV; Kipping 2009) and time-of-arrival analysis of
pulsars (Lewis, Sackett & Mardling 2008). There are further pho-
tometric methods for observing rings of exoplanets (Ohta, Taruya
& Yasushi 2009; Di Stefano, Howell & Kawaler 2010), starspots in
transits (Silva 2003; Silva-Valio et al. 2010, and references therein)
or even transits of alien spacecrafts (Arnold 2005).

Here we propose a photometric method for the detection of the
moon directly in the raw transit light curves. When the moon is
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in transit, it puts its own fingerprint on the intensity variation. In
realistic cases, this distortion is too little to be detected in the indi-
vidual light curves. Simply taking the boxcar average of a folded
light curve that consists of many transits is not a powerful solution
because it results in a significant amount of correlated (pink) noise.
The smooth variation of this correlated noise can mimic/hide the
real distortions of the light curve due to the moon. Here we intro-
duce the scatter of the folded light curve as an appropriate estimator
for the presence of a moon. The stability of the method relies on its
robust nature, i.e. the scatter will be estimated in a boxcar that is
comparable, or even longer, than the transit duration.

Here we show that a careful analysis of the scatter curve of
the folded light curves enhances the chance of detecting the exo-
moons directly. Our aim is to present a detection technique that is
very specific, i.e. when the test is positive, the presence of an exo-
moon is probable. With careful pre-processing of the light curves
(e.g., by recentering the transits), signals that can mimic exomoons
are largely suppressed. Consequently, the scatter peak method can
be considered both as a tool (i) for quickly finding systems that
warrant more detailed analyses and a tool (ii) for confirming the
presence of an exomoon when suspected from TTV and/or TDV
analyses.
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2 A S I M P L E M O D E L FO R T H E AV E R AG E D
L I G H T C U RV E S

2.1 Averaged transit light curves with a moon

Here we describe a very simple model to illustrate the concept
of the scatter peak. For the sake of clarity, we consider a special
configuration (Fig. 1) that can be handled analytically. Generic
transit light curves with a moon will be examined later in numerical
simulations.

Let us assume a moon on the circular orbit, and therefore, we
a priori know the shape of the light-curve component of the moon
(it is similar to that of the planet in shape and duration, but with
shallower transit). In this case, the orbital inclination of the moon is
90◦. We assume further that the moon orbits slowly, i.e. the moon–
planet geometry does not change significantly during the transit,
while the transits of the moon appear somewhat earlier or later
than the planet’s transit. We also make use of the knowledge that
TTV was initially removed from data by transforming the time (i.e.
shifting the derived transit to the predicted value by recentering,
Section 4.1).

Let f (x) be the density function of x, the moon’s projected po-
sition. Here x := am ∗ sin ν, where ν is the anomaly and am

is the semimajor axis of the moon (Fig. 1). Because the orbit is
circular, ν follows uniform distribution. After some calculus (see
Appendix A for the details) we get the density function of x which
is

f (x)dx ∝ 1√
a2

m − x2
dx. (1)

The projected distribution of the moon around the planet follows a
1/

√
a2

m − x2 distribution.
Because both the transit light curve of the moon, lc(t) and the

averaged light curve is a function of time, f (x) dx must be rewritten
to a time domain. If the projected position of the moon is x apart from
the planet, the time delay between the transits of the moon and the
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Figure 1. Transit geometry of a star–planet–satellite system.

planet is x/vorb, where vorb is the orbital velocity of the planet. The
appropriate transformation to the time domain is therefore �t =
x/vorb. Here the relative transit time of the moon �t = t − tp,
where tp is the time of the transit of the planet. With this notation,
the distribution of the transit time of the moon is

f (�t) dt ∝ 1√
(am/vorb)2 − (�t)2

dt . (2)

In every case, when the moon is observed in an individual light
curve, the occulted flux will be the sum of the transit light curve of
the planet centred at tp and the transit light curve of the moon cen-
tred at tp + �t . The light curve of a single event is a convolution of
the transit light curve with two Dirac delta functions with different
weights, representing the planet and the moon at tp and tp + �t ,
respectively. The average light curve of many events is the expec-
tation flux, taking all ν values into account. At this step, the planet
component can be subtracted, and the residual of the moon will
remain alone. Since we average many events, the many individual
Dirac delta functions representing the moon will follow the distri-
bution of f (�t); thus, the many delta functions in the summation can
be simply replaced by a convolution with f (�t). Consequently, the
lcm(�t) light curve components due to the moon will be averaged
to lcm(�t), which is

lcm(�t) = f (�t) ⊗ lc(�t), (3)

where ⊗ represents a convolution.

2.2 The scatter peak

The presence of a moon at a given �t transit time follows a dis-
tribution with a local probability defined in equation (2). Provided
that the moon is in fact at the given position, lc(�t), the light-curve
component associated with the moon will be known everywhere.
From a set of �t positions distributed according to equation (2), one
can infer the successive distribution of light loss at each generic time
τ . In the general case, this distribution will be of the multinomial
family, with a non-trivial shape (i.e. if the transit parameters are
such that ingress–egress phases are shallower/steeper, there will be
more/less probability to detect just little light hidden by the moon).
Of course, simulations can easily support parameter-dependent dis-
tributions, but for the theoretical framework it is more prudent to
consider a very simple light-curve shape: a simple box with the
duration (D) and the depth (δmmoon) as free parameters.

Within this framework, the light occulted by the moon at a generic
time τ will be equally δmmoon if the moon’s position is closer to τ

than D (|�t − τ | < D/2) and will be equally zero elsewhere. Hence
we know the distribution of the moon itself; this condition on the rel-
ative positions can be evaluated; leading to δmmoon, light is occulted
by the moon with a probability p expressed by a convolution

p(�t) =
∫ τ+D/2

τ−D/2
f (�t) dτ ≡ f (�t) ⊗ I (|�t − τ | < D/2) (4)

at a generic time τ . Here, I(C) is the identity function which is 1,
whereas C is true and 0 elsewhere. With this formulation, the light-
curve components due to the moon will be binomially distributed,
and the local scatter of light curves can be estimated using the
standard deviation of the binomial distribution:

rms = δmm

√
p(1 − p), (5)

which is the scatter curve of the moon’s transit and δmm is the
expected light loss if the single moon is in transit.

Because the precise measurement of scatter requires the analysis
of many data points, the light curves will be evaluated in a very
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wide long boxcar in practice, to derive precise scatter values. This
sampling will behave as a convolution kernel acting on the local
values of the scatter, and finally, the shape of scatter curves will be
reduced to a simple wide peak (the ‘scatter peak’) around the transit
time of the planet.

In the following section, we examine the scatter peak in real
simulations.

3 SI M U L ATI O N S

We made realistic numerical simulations with our image-level sim-
ulator (Simon, Szabó & Szatmáry 2009) to examine the discovery
probabilities of large exomoons in light curves of different pho-
tometric qualities. The reliability analysis (Section 4.1) invokes
an accurate estimation of the light-curve scatter and moreover the
scatter of the scatter. Because these statistical variables are highly
fluctuating, there is a demand for ≈100 transit data for convincing
results. Additionally, the same length of data set is required without
a moon, interpreting the null signal event. This will be the reference
in making the decision whether the detection of the moon is signifi-
cant. Therefore, all subsets incorporated 109 individual transit light
curves. Continuous data sets are delivered by space observatories
and even the longest ones from Kepler will span about three to five
years at most. Hence, the scatter peak is restricted for exomoons
around planets with Porb � 10–20 d. That is why we selected Porb =
10 d for the model planet. This is also favourable because of the dis-
tribution of the currently known exoplanets: the majority of them
has orbital periods of this order of magnitude. However, we recall
again that the most relevant parameter is not the period of the planet,
but the number of transits which we are able to observe.

The planet was a hot Jupiter with 0.7MJupiter, 1.0RJupiter mass
and radius on a circular orbit with aplanet = 0.09 au. The model
moon orbited at amoon = 6.84 × 105 km, 82 per cent of the Hill
radius and had a period of Pmoon = 4.3 d. This configuration was
considered to generally represent a non-resonant case while the
moon was enabled to orbit during the transit, and mutual transits
were also comprehended. The central star was a solar analogue.
Sample light curves of such a system are shown in the top rows of
Fig. 2.

Transit light curves of four different qualities were simulated.
One data set represented the best quality ground-based (GB) pho-
tometry with 178 s sampling and the 0.23 mmag standard deviation
of the light-curve points (0.7 mmag error, closely mimicking what
has been achieved by Southworth et al. 2010). Space measurements
were represented by Kepler space telescope short cadence (SC)
and long cadence (LC) samplings and the bootstrap noise of non-
variable stars. The quality of future space observatories was rep-
resented by the anticipated data quality of ESA’s planned PLATO
mission. For the ‘PLATO’ quality data set we assumed 25.13 s sam-
pling and an accuracy of 0.12 mmag (data taken from Catala et al.
2011). In such a way, 16 subsets of light curves were calculated,
each representing individual systems with different moons (0.5–
1.0REarth for GB, Kepler LC and SC quality, and 0.4–1.0REarth for
PLATO quality).

4 D E T E C T I O N S T R AT E G Y

The secure detection of a moon relies on four important steps.
After pre-processing the data, the detection parameters have to be
fine tuned, then applied to the observations and finally, we make

Figure 2. Simulations of 109 transits of a 1RJupiter-sized planet with Kepler SC sampling and noise. Left-hand panel: simulations without a moon; right-hand
panel: scatter peak of a 1.0REarth-sized moon. Each column shows the input light curves, the noisified light curves, the median filtered light curves, the residuals
to the median and the rms scatter of the residuals (the insets plot the ingress phase of the exomoon; tick step is 50 ppm).
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a decision on whether the scatter peak is significant. The detailed
recipe of the entire process is as follows.

4.1 Recentering

During pre-processing, the transits must be recentred and stretched
to have zero TTV and TDV. This is because there are other sources
of TTV and TDV than moons, e.g., perturbing planets. If the folded
light curves are still allowed to exhibit such variation of timings and
duration, these events will of course result in a scatter peak but not
due to the moon. However, if TTV and TDV are removed, and the
scatter peak still survives, one will have evidence that there are slight
variations in the shape of the transit and its vicinity. Some other
processes can lead to similar results, i.e. the stochastic occultation of
individual starspots by a single planet. In suspicion of some process
leading to systemic light-curve variations, the variations must be
modelled specifically before applying the scatter peak evaluation
(see also Section 4.4). However, it has to be stressed again that most
scenarios with a scatter peak but without a moon can be excluded
by recentering; therefore, this step of pre-processing is the most
important ingredient of the method.

In this paper, we used simulations with zero TTV and TDV
because the mass of the exomoon was forced to be zero in our light-
curve simulator. Thus, all detections reflect the photometric effects
of the moon itself.

4.2 Boxcar size estimation

The average transit shape is derived from a boxcar median of the
folded light curves. The length of the boxcar is a sensitive parameter
that must be preset with care. Too little boxcars contain too few
points; thus the scatter in the folded light curve and the scatter
of the scatter cannot be determined accurately enough. Too large
boxcars, on the other hand, cover a longer part of the light curve with
significant light variation; therefore, a false scatter peak emerges just
because the blurred template differs a lot from the measured light
curve. Moreover, the boxcar size will depend on the length and
sampling of data, and on the parameters of the planet.

In every case, the boxcar length must be set manually with nu-
merical experiments. A large number of planet transits must be
simulated with the same sampling as the data and varying noise.
Then, the largest boxcar must be defined which does not produce a
false scatter peak with no-moon simulations in the input.

4.3 Evaluation

We experienced optimal boxcar lengths of 249, 25, 749 and 1749
photometric points for the GB, LC, SC and PLATO data, respec-
tively. This means that the optimal boxcar was ≈400 s long, regard-
less of the sampling rate. (This boxcar size corresponds to 1/2200
orbital phase.) Longer boxcars tend to blur the light curve of the
planetary transit too much, while shorter boxcars give too noisy
results. The use of median is necessary because the signal is little,
and the possible outliers have to be eliminated effectively. For such
data distributions (e.g. Gaussian noise with distorted wings), the
median is a more stable estimate than the mean (Lupton 1995). We
have checked the stability of our methods utilizing the mean as the
local estimate of light curves, and we indeed experienced that the
median is more stable, especially for the length of the boxcar.

In the next step, the median light-curve shape must be subtracted
from the observations, leading to the scatter of the light curves (that
is, partly due to the signal of the moon if it exists). The scatter peak

is there already, but the data distribution is too noisy for an identi-
fication. Therefore, smoothing is needed in another boxcar which
can be similarly optimized as described above. In our simulations,
the second boxcar consisted of 14 999, 1499, 44 777 and 104 999
points (LC, SC, GB and PLATO data, respectively), meaning 1.3
times the transit duration. Surprisingly, so long boxcar is necessary
to determine the scatter value with appropriate accuracy. When the
boxcar is centred at the mid-time of the transit, it can measure the
ingress and egress phases of the moon, which may occur well be-
fore and well after the transit of the planet, depending on the instant
geometrical configuration.

If the exoplanet hosts a moon, a well-defined peak of light-curve
scatter appears at the phase of the planetary transits. The height of
the peak expresses how significantly the scatter will be increased
by systemic light-curve distortions. We normalize the height to the
scatter level of the out-of-transit phase. The scatter peak increases
with the size of the moon, but its height also depends on the quality
of data acquired. In Fig. 3, a set of simulations is shown with
the different pre-defined data qualities (in successive columns) and
with increasing moon sizes (in successive rows). From this figure,
it can be suspected that as large moons as 1REarth can very likely be
detected via the scatter peak.

4.4 Decision making

In the final step, we decide whether there is a convincingly high scat-
ter peak in the data. Even in the no-moon case, the smoothed resid-
uals can mimic a scatter peak just by chance because of numerical
fluctuations. A convincingly high scatter peak means such a peak
value which infrequently (false alarm probability, FAP) evolves
from random fluctuations. A scatter peak is convincing if the speci-
ficity, 1-FAP, is close to 1.

The most simple strategy is to observe whether the observed scat-
ter curve exceeds a pre-set threshold level at the time of the transit
(i.e. the local scatter is significantly higher than the average scat-
ter plus a few scatters of the scatter, which means that the scatter
has really increased, and we do not see the result of simple nu-
merical fluctuations). A lower threshold increases the sensitivity
and decreases the size limit, but the FAP worsens if the value is
set too low. Balancing between sensitivity and specificity sets up
the lowest appropriate threshold level. To do this, we first decide
the specificity of the desired detection rate, and then simulate and
evaluate many (thousands) of no-moon events. The threshold level
belonging to the given specificity is the upper bound of the lowest
1-FAP proportion of scatter peaks. If the observed height of the
peak exceeds the threshold level we accept the positive detection.

If one suspects the act of any other process which can lead to
a scatter peak, this process must be modelled and incorporated in
selecting a threshold level. For example, in the case of an active
star, a spotted stellar model can be fitted. The null event has to be
simulated with this spotted stellar model, and the threshold level
has to be determined in reference to these light curves.

4.5 Weighting

A modified implementation of this method involves the appropriate
weighting of photometric residuals, instead of a boxcar smoothing.
This will be necessary whenever data of different quality are avail-
able. When smoothing in the boxcar (Section 4.4), the expectation
for the mean value of the scatter is calculated as, of course,

scãtterboxcar =
√

1

N

∑
∀i in boxcar

r2
i , (6)
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Figure 3. Normalized scatter peaks due to moon transits in sample simulations. Each consecutive row shows 10 curves with Kepler SC, LC and expected
PLATO simulations. Figure lines show simulations of a 1RJupiter planet with a moon of 0.5, 0.7, 0.8, 0.9 and 1.0REarth, respectively.

where ri is the residuals inside the boxcar, N is the number of data
points and ˜ denotes an estimate.

If the errors of different data points differ, this formulation re-
quires weighting to keep the least-squares property of our estimator.
In this case, the scatter in the boxcar will be estimated as

scãtterboxcar =
√√√√( ∑

∀i in boxcar

1

σ 2
i

)−1 ∑
∀i in boxcar

r2
i

σ 2
i

, (7)

where σ i is the error of the ith data point. Although equation (7)
is proportional to the statistic which is usually tested with χ2 dis-
tribution, we keep suggesting a non-parametric evaluation of the
weighted scatter, such as described in Section 4.4. This is because
χ 2 evaluation assumes that data points come from normal distri-
butions. This is not strictly true in the general case. This improper
assumption introduces a little bias, which may easily hide the little
signal that we are looking for, or may result in a false alarm. The
detection threshold must always be derived from the statistics of the
out-of-transit scatter.

5 R ESULTS

In Fig. 4, we show simulated detection probabilities and specificity
(1-FAP) estimates, expected for GB, Kepler LC, SC and PLATO-
quality simulated observations. The threshold level is represented
in the ordinate, in units of the standard deviation of the scatter curve
belonging to the null signal (i.e. out of transit). Decreasing curves
(in grey colour) represent the detection probabilities belonging to
different size moons, while the black curve plots specificity. We have
deduced that for a clear detection (false alarm rate <1 per cent),
threshold levels in the 4.3–4.5σ range must be chosen (Fig. 4),
almost independently of the quality of the data (sampling rate and
scatter).

Somewhat surprisingly, top quality GB observations promise a
30 per cent discovery rate for Earth-sized exomoons, having a scatter
peak above the 4.4σ threshold level. Yet we have not got submmag
quality observations of ≈100 full transits of the same planet, but

the increasing number of transit observations and the increasing
accuracy of data promise this possibility in the future.

Space telescopes offer a better detection performance only with
SC sampling. Selecting 4.4 σ threshold, practically all moons of
1REarth size will be discovered in SC (detection rate is 99 per cent.)
The 0.9 and 0.8 Earth-sized moons can be discovered with 70 and
20 per cent in Kepler SC data, respectively. The detection limit with
Kepler is around 0.7REarth. These are such large moons which do
not exist in the Solar system, but they may be found elsewhere. If
such moons exist, they should be discovered in Kepler data, and a
possible negative result will be a significant implication for the lack
of so large moons around hot Jupiters.

Somewhat surprisingly, detection statistics rapidly worsens with
longer cadence. We will show that this is primarily a smearing
effect (Kipping 2010) rather than a sampling effect. In the top-
left panel of Fig. 4, we compared the detection statistics with the
Kepler LC curves with instantaneous sampling of the unsmeared
light curves (1REarth size moon, plotted with the dashed line), and
the smeared light curve (that is the integrated brightness over the
half an hour long exposure, plotted with solid squares and error
bars). Selecting a 4.4σ threshold, the detection rate of our model
exomoon would be more than 90 per cent with half an hour cadence
and without smearing (instantaneous sampling), while it decreases
to ≈15 per cent if smearing is also included in the model light
curves. The detection statistics of smaller exomoons is identical to
the distribution of false positives, so in these cases we do not expect
success. The striking impairment of the detections is simply due
to the severe smearing on the light-curve wings, which blurs the
light curve of the planet, suppressing the little-light variations of
the moon itself.

A real breakthrough is expected by the PLATO mission, which
is expected to have significantly lower detection limits (bottom-
right panel in Fig. 4). PLATO should be able to discover the most
exomoons which are larger than 0.6REarth with very low FAP rates.
Setting the threshold level to 4.5σ , we expect to discover 40 per cent
of the moons with 0.5REarth radius and 7–8 per cent of exomoons
with 0.4REarth. This experiment will be conclusive in the field of
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Figure 4. Detection probabilities and specificity levels (1-FAP) at different threshold levels above the background signal with σ standard deviation. Figures
show the performance of Kepler LC data (top-left), best quality GB observations (top-right), Kepler SC data (bottom-left) and expected quality of PLATO
(bottom-right). To illustrate how smearing impairs the detection statistics, in the top panels we plot results from unsmeared reference curves with dashed lines.
Smearing does not affect SC sampling (bottom panels). Different-sized moons are colour coded; note that the change in moon sizes in the bottom-right panel.

quest for exomoons: we do know that moons greater than 0.4REarth

exist: three moons in our Solar system exceeds this size limit.

5.1 Close-in moons

Besides the size of the moon, the detectability also depends on the
orbital radius of the moon. Light-curve effects of close-in moons
are limited to the close vicinity of the transit, shortening the time in-
terval when the light-curve distortion is present. This will decrease
the scatter of the residuals, and somehow deteriorate the detection
statistics. (N.B. close-in moons suffer similar observational limita-
tions with the other methods.) However, the scatter peak method is
able to detect at least a part of these kinds of moons. To demon-
strate this, we illustrate how the detection statistics worsens for a
certain configuration and a single instrument. The complete anal-
ysis of close-in moons is a complex multiparametric problem and
lies beyond the scope of this paper (see Kipping 2011 for a detailed
discussion of a such configuration).

We designed systems consisting of the same planet as in the
previous simulations and systematically decreased the orbital radius

of the moons to the values of 10, 28, 46, 64 and 82 per cent of the Hill
radius. The selected data quality was the PLATO-kind sampling and
noise, while we observed moons of 0.7, 0.6 and 0.5REarth. In Fig. 5,
we plot the normalized height of the scatter peak and compare it to
the highest peaks by numerical fluctuations in the no-moon case.
The heights of the false alarm peaks are plotted with non-continuous
lines, while the 4.5σ threshold is denoted by the solid horizontal
line. To the left, we plotted the Roche limit, assuming the moon
has a density of 3 g cm−3. The symbols show the detection statistics
of the 15 probed configurations. Here, one symbol and the interval
lines represent a whole distribution of detection success. Therefore,
the interval covered by the ‘error bar’ is the most informative:
whenever the error bar goes higher than the threshold level, there
are some correct positive detections above 4.5σ level, regardless of
the position of the symbol itself.

The plots demonstrate that the detection rate of 0.5REarth-sized
moons decreases with decreasing the orbital distance; however, the
‘error bar’ above the solid line expresses that there will be a chance
for the detection even at 25–30 per cent of the Hill radius (depending
on how lucky configurations occur during the observations). On the
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axis plots the height of the peaks above the out-of-transit fluctuations, scaled
by σ , the standard deviation of the blurred out-of-transit fluctuations. The
threshold level of 4.5 times of the out-of-transit scatter is represented by the
solid line.

other hand, the detection success does not decrease for a 0.6REarth

moon (although the significance does decrease, but all systems are
detected, since all of them remain above the 4.5σ threshold). The
close-in orbits of moons influence the detection statistics only for
the moons near the size limit of an observational configuration and
does not affect the detection success of larger moons. The observa-
tional bias near the low end of moon sizes can be determined with
similar numerical experiments, making use of the relevant param-
eters of the certain system and the quality of the observations as
input.

6 D ISCUSSION

Besides the scatter peak, several other methods have been proposed
which do have the potential of discovering an exomoon (e.g. TTV,
TDV, time-of-arrival analysis of pulsars). A significant limitation for
such an application is that the transit configuration of the planet can
also vary because of perturbations. Hence, the detected variations
have to be analysed further and the perturbations must be excluded
as the origin of variations. Another limitation is the requirement
of having ≈100 transits at least for the analysis, which makes the
method to be applicable only for planets with orbital periods of less
than 10–20 d. However, this limitation is due to the planned three
to five year lifetime of space observatories, and we anticipate that
it will be applicable for longer period planets if homogeneous data
sets will be available for some transiting systems. Another possible
limitation is of physical nature, i.e. more massive moons are more
rapidly removed by tidal forces (see Barnes & O’Brien 2002 for a
detailed description), while moons beyond ≈0.5 of the Hill radius
are not stable on the long time-scale (several billion years in some
cases; Domingos, Winter & Yokohama 2006).

In comparison to these methods, scatter peak analysis will be
insensitive to perturbation effect in a slightly modified form. If
each individual transit is recentred to the estimated position of the

planet, the local fluctuations caused by the timing variations will
be eliminated. The exact implementation would be ‘planetocentric’
recentering; for that barycentric TTV is only a good proxy if there
is a moon. But in fact any recentering method may be applied here:
if there is a moon and we get a positive detection we get what we
were looking for. If there is no moon, parametric transit time and
the light-curve photocentre (Szabó et al. 2006) coincides exactly,
and any of them is appropriate to eliminate planet perturbation
effects. The varying position of the moon, however, will still result
in systematic variations of the light curve, which will increase the
local scatter and, hence, enable to infer that a moon is present.
Another advantage is the non-parametric nature of the scatter peak
method, which warrants that a priori assumptions of the shape of
the transit light curve do not influence the result. We remark that
the method is now tested for different moon sizes and orbital radii,
while a more general testing (also for inclined and non-circular
orbits) is the task of a forthcoming paper. However, the current
level of testing does not influence the suggestion that the scatter
peak method can help a lot in discovering the exomoons.

ESA’s planned PLATO mission will offer a great opportunity for
the detection of exomoons because of the large number of the tar-
geted stars (≈250 000) and their favourable brightness (8–11 mag).
These stars will be mostly cool dwarfs; hence, there will be a good
possibility for very accurate radial velocity measurements and to
observe the Rossiter–McLaughlin effect in transit. It may be pos-
sible to detect the moon in the Rossiter–Mclaughlin effect, too, as
a confirmation of the moon, which is independent from the scatter
peak (Simon et al. 2010). Kaltenegger (2010) suggested that even
the atmosphere of an Earth-sized exomoon can be detected, which
is the most important if such an exomoon orbits in the habitable
zone (Kipping, Fossey & Campanella 2009).

The most significant error source for the scatter peak method
is the quality of de-trending the observed light curves. For space
photometry, the slowly changing zero-point of the data could be a
significant limiting factor because removing the instrumental trends
is everything but trivial. Also, if the detrending of Earth-based
photometry involves a comparison of the observation to a set of
parametric templates, there will be risk that the algorithm will try
to interpret the signal of the moon as systematics and eliminate its
signal.

In summary, we conclude that testing the scatter peak from a
sequence of light curves is a promising tool for detecting moons
directly in the light curves. The success relies on three important
conditions as follows.

(i) All light curves must be stacked in such way that the transit
time of the planet exactly coincides with each of the analysed light
curves.

(ii) Transit observations must include the out-of-transit phases
before and after the transit of the planet, where the scatter due to
the moon is the highest. The wings must span at least as long as the
transit duration.

(iii) Trend filtering of the light curves must be carried out in such
a way that small deviations immediately before and after the transit
of the planet shall remain unaffected.
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A P P E N D I X A : D E R I V I N G T H E P RO J E C T E D
P O S I T I O N O F T H E MO O N

We know that ν follows a uniform distribution and the question
is the density function of x = sin ν (we assume that the length is
measured in the unit of am for the sake of simplicity). Let F(ν) =
p(ν ′ > ν) and F(x) = p(x′ > x) be the cumulative distribution of the
same set of positions, parametrized by ν and x, respectively (here p
represents probabilities, ν ′ and x′ are generic running parameters).
Since ν is uniformly distributed,

dF (ν)

dν
= 1

π
(A1)

where ν is the element of the interval [−π/2, π/2]. By the assump-
tion made on the length-scale, xm = sin ν. The differentials of this
transformation are dxm = cos ν dν, and because cos ν = √

1 − x2
m,

dν = dxm/
√

1 − x2
m. Substituting dν with dx leads to the result

dF (ν)

dx
= 1

π
√

1 − x2
, (A2)

which is equation (1) of the paper after am is written explicitly
to represent the appropriate length-scale. Although the expression
is singular at the end points (x/am = ±1), there is no problem
with its interpretation because the expression can be integrated
everywhere (the question ‘What is the probability of having the
moon in the outermost 1 per cent of the projected orbit?’ can be
answered exactly, despite the singularity.)
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