Irodalomjegyzék


1
A. Liddle: An Introduction to Modern Cosmology, Wiley (2003)

2
R. Amanullah és tsai., Spectra and Light Curves of Six Type Ia Supernovae at 0.511 < z < 1.12 and the Union2 Compilation, Astrophys. J. 716, 712 (2010); e-print: arXiv:1004.1711

3
A. G. Riess, és tsai., BVRI Light Curves for 22 Type IA Supernovae, Astron. J. 117, 707 (1999); e-print: arXiv:astro-ph/9810291

4
A. G. Riess, és tsai., A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3, Astrophys. J. 730, 119 (2011); e-print: arXiv:1103.2976

5
C. L. Bennett, és tsai., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, publikálásra benyújtva az Astrophys. J. Supp. Ser. folyóirathoz (2012); e-print: arXiv:1212.5225

6
F. Beutler és tsai., The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416, 3017 (2011); e-print: arXiv:1106.3366

7
N. Padmanabhan és tsai., A 2% Distance to z=0.35 by Reconstructing Baryon Acoustic Oscillations - I : Methods and Application to the Sloan Digital Sky Survey, Mon. Not. Roy. Astron. Soc. 427, 2132 (2012); e-print: arXiv:1202.0090

8
C. Blake és tsai., The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z < 1, Mon. Not. Roy. Astron. Soc. 425, 405 (2012); e-print: arXiv:1204.3674

9
L. Anderson és tsai., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample, Mon. Not. Roy. Astron. Soc. 427, 3435 (2012); e-print: arXiv:1203.6594

10
Planck kollaboráció, Planck 2013 results. XVI. Cosmological parameters, publikálásra benyújtva az Astronomy & Astrophysics folyóirathoz (2013); e-print: arXiv:1303.5076

11
L. Kofman, A. Linde, A. Starobinsky, Reheating after inflation, Phys. Rev. Lett. 73, 3195 (1994); e-print: arXiv:hep-th/9405187

12
S. Dodelson, Modern Cosmology, Academic Press. (2003)

13
K. A. Olive, Big Bang Nucleosynthesis, Nucl. Phys. B Proc. Supp. 80, 79 (2000); e-print: arXiv:astro-ph/9903309

14
E. J. Pagel és tsai., The primordial helium abundance from observations of extragalactic H II regions, Mon. Not. Roy. Astron. Soc. 255, 325 (1992)

15
E. Skillman és R. C. Kennicutt, Spatially resolved optical and near-infrared spectroscopy of I ZW 18, Astrophys. J. 411, 655 (1993)

16
E. Skillman és tsai., Spatially resolved optical and near-infrared spectroscopy of the low-metallicity galaxy UGC 4483, Astrophys. J. 431, 172 (1994)

17
Y. I. Izotov és T. X. Thuan, The Primordial Abundance of $ ^{4}$He Revisited, Astrophys. J. 500, 188 (1998)

18
B. Fields és S. Sarkar, Big-Bang nucleosynthesis (Particle Data Group mini-review), J. Phys. G. 33, 1 (2006); e-print: arXiv:astro-ph/0601514

19
S. Burles, K. M. Nollett, és M. S. Turner, Big-Bang Nucleosynthesis: Linking Inner Space and Outer Space, Text and 7 color eps figures from poster for the DAP "Great Discoveries in Astronomy in the Last 100 Years" exhibit at APS centennial meeting; gif of 36"x36": http://gamma.nrl.navy.mil/dap-aps/dapaps/indexp2.htm; e-print: arXiv:astro-ph/9903300

20
J. M. O'Meara és tsai., The Deuterium to Hydrogen Abundance Ratio toward a Fourth QSO: HS 0105+1619, Astrophys. J. 552, 718 (2001); e-print: arXiv:astro-ph/0011179

21
P. Callin, How to calculate the CMB spectrum, (2006); e-print: arXiv:astro-ph/0606683

22
W. Hu, D. Scott, N. Sugiyama, M. White, Effect of physical assumptions on the calculation of microwave background anisotropies, Phys. Rev. D 52, 5498 (1995); e-print: arXiv:astro-ph/9505043

23
J. M. Stewart, Perturbations of Friedmann-Robertson-Walker cosmological models, Class. Quantum Grav. 7, 1169 (1990)

24
J. M. Stewart és M. Walker, Perturbations of spacetimes in general relativity, Proc. R. Soc. A, 341, 49-74 (1974)

25
J. M. Bardeen, Gauge-invariant cosmological perturbations, Phys. Rev. D 22, 1882 (1980)

26
R. Durrer, The Cosmic Microwave Background, Cambridge Univ. Press (2008)

27
M. Tegmark és tsai., The 3D power spectrum of galaxies from the SDSS, Astrophys. J. 606, 702 (2004); e-print: arXiv:astro-ph/0310725

28
V. Springel et al.., Simulating the joint evolution of quasars, galaxies and their large-scale distribution, Nature, 435, 629 (2005), e-print: arXiv:astro-ph/0504097

29
http://www.mpa-garching.mpg.de/galform/millennium/

30
http://www.nasa.gov/vision/universe/starsgalaxies/dark_matter_proven.html

31
D. J. Eisenstein et. al., Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies, Astrophys J. 633, 560 (2005); e-print: arXiv:astro-ph/0501171

32
M. White: The Echo of Einstein's Greatest Blunder, http://mwhite.berkeley.edu/BAO/SantaFe07.pdf

33
D. J. Eisenstein, H.-J. Seo, M. White: On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter. Astrophys. J. 664, 660 (2007)

34
D. J. Eisenstein, Dark energy and cosmic sound, New Astron. Rev. 49, 360 (2005)

35
A. P. Lightman, Double Compton emission in radiation dominated thermal plasmas, Astrophys. J. 244, 392 (1981)

36
Q. Yu, D. N. Spergel, J. P. Ostriker, Rayleigh Scattering and Microwave Background Fluctuations, Astrophys. J. 558, 23 (2001)

37
C-P. Ma és E. Bertschinger, Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges, Astrophys. J. 455, 7 (1995); e-print: arXiv:astro-ph/9506072

38
W. Hu és N. Sugiyama, Anisotropies in the Cosmic Microwave Background: An Analytic Approach, Astrophys. J. 444, 489 (1995); e-print: arXiv:astro-ph/9407093

39
E. W. Kolb és M. S. Turner, The Early Universe, Addison-Wesley (1990)

40
S. Bashinsky, U. Seljak, Signatures of Relativistic Neutrinos in CMB Anisotropy and Matter Clustering, Phys. Rev. D 69, 083002 (2004); e-print: arXiv:astro-ph/0310198

41
K. Ichikawa, Neutrino mass constraint from CMB and its degeneracy with other cosmological parameters, J. Phys. Conf. Ser. 120, 022004 (2008); e-print: arXiv:0711.2622

42
V. Mukhanov, Physical Foundations of Cosmology, Cambridge Univ. Press. (2005)

43
C. L: Reichardt és tsai., A Measurement of Secondary Cosmic Microwave Background Anisotropies with Two Years of South Pole Telescope Observations, Astrophys. J. 755, 70 (2012); e-print: arXiv:1111.0932

44
Planck kollaboráció, Planck 2013 results. XV. CMB power spectra and likelihood, publikálásra benyújtva az Astronomy & Astrophysics folyóirathoz (2013); e-print: arXiv:1303.5075

45
http://www.ifa.hawaii.edu/cosmowave/supervoids/the-integrated-sachs-wolfe-effect/

46
O. Zahn és tsai., Cosmic Microwave Background Constraints on the Duration and Timing of Reionization from the South Pole Telescope, Astrophys. J. 756, 65 (2012); e-print: arXiv:1111.6386



Szeged 2013-05-01