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False periods in complex chaotic systems
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ABSTRACT

Aims. Astrophysical objects frequently exhibit some irregulas or complex behaviour in their light curves. We focusnanily on hot stars,
where both radial and non-radial pulsations are observee. @ the primary research goals is to determine physicameters of stellar
pulsations by analyzing their light curves or spectra, sireg on periodic or quasiperiodic behaviour.

Methods. We analyse the feasibility of classical methods for periearshes in a nonlinear chaotic system, such as the Rogstens where
a period does not exist at all. As an astrophysical apptioatif the chaotic system, we utilize a simple model of stgllaisation with two

different sets of parameters corresponding to periodic andicHaghaviour. For both models we create a synthetic sigmad, then apply
widely used methods for period finding, such as the phasedigm method and periodograms. For comparison, a quasdpesignal is

employed as well.

Results. The period analysis indicates periods even for the cha@itak Such periods are apparently spurious. This imphes it is very

problematic to distinguish chaotic and quasiperiodic pssdhy such an analysis only.
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1. Introduction precise one-zone model also produced chaotic solutiotts avi

o . . o strange attractor similar to the Rossler one (see RA$E86).
Variability of astronomical sources like stars is an impatt Detailed, more realistic calculations of the state equeti

aspect of their observation. We, can detect variapility keirth helium ionization in a one zone model, which was performed
light andor spectra on dierent timescales. Dynamical pulsab Buchler & Regev(1982), confirmed that pulsation instabil
f may e o ot
y

ftion_s, .radial_orlljon.-radial, may be one of the main sources may lead to chaotic behaviour.
intrinsic variability in many types of stars. As was shown b
[(19109), stars may exhibit pulsation due to théains  Goupil et all (1986) studied light curves of the pulsating
ble layers in the stellar envelope. The first theoreticalefiosy white dwarf PG 1353489 and found strong evidence of pe-
of pulsations predicted regular oscillations and such riinge riod doubling. Period doubling is a scenario where a sys-
was succesfully applied to objects like classical Cephd@ds tem that primarily oscillates with a fundamental frequency
later, observations indicated other types of pulsatingstag. vo, after change of the control parameter oscillates with fre-
Population I Cepheids, which in some cases exhibit irraguiquencyvo/2 (see Helleman|, 1980; Gurel & Rossler, 1979).
patterns in observational data. Cascades of period doubling is a typical transition routes t
There was no reliable explanation of such variability urehaotic behaviour. Such arffect is typical of chaotic sys-
til the pioneering work of Baker et all_(1966), which showetems. Serre et al.| (1996) analysed long time-series of photo
that a simple one-zone model of stellar oscillators with @etric observations of the variable star R Scuti, one ptessib
nonlinear adiabatic term can in some specific conditions preandidate pulsating star which exhibits a strange irredigat
duce irregular pulsation. Similar results were also otadincurve. By using the method of global flow reconstruction (see
by [Moore & Spiegel [(1966), Auvergne & Baglin_(1985) andnore about global time series predictions in Brown (1993),
Auvergne [(1988). The disadvantage of these models is thAharbanel etal. [ (1994)), they were able to reproduce the ob-
dynamically unstable equilibrium state, which seems todse n servation with the chaotic dynamics very well. More details
realistic for stars@tl@h?) and later Saitou & Takeuand examples of chaotic pulsations can be found in Bukthler
(1989) showed that similar, yet dynamically stable and mo ). These clearly show that there is both theoreticdl an
experimental evidence of quasiperiodic or chaotic behavio
Send offprint requests to: V. Votruba variable stars. The problem is how to distinguish betweesgh
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Fig. 1. Left panel: Chaotic attractor constructed from a numerical solutibthe ODE systeni{1) with the parameters from Table
[@. - chaotic caseRight panel: Two-limit cycle attractor constructed from numericalwwodn of (I) with the parameters from
Table[]. - periodic case.

two possibilities, if only limited time series are availapbften signal is modeled by the following equation

very unevenly sampled. In other words, what will be the resul : . . .

if classical astronomical tools for the period searcheshsis Xquas(t) = @y sin (f1t) + &z sin (f20) + agsin (ft) -~ (2)
periodograms, the phase dispersion minimalization meéiiodwherea,, a;, as are amplitudes of incommensurate modes with
more sophisticated techniques are applied to data orig@atfrequencies, f2, fs. Their values are summarized in Tatés 1
from quasiperiodic or chaotic sources. In the next pardgamnd2. These parameters are carefully chosen in order tmobta

we tackle the problem using synthetic data. similar dependencies of(t) and xquas(t) for the chaotic and
guasiperiodic case, namely amplitudes of oscillations Eg.
2. Generation of synthetic time series ). The computed signal for each type of process is plotted in

Fig.[2. Since we want to simulate real measurements, we add a
As an example of irregular stellar variability due to puisat synthetic signal with Gaussian noise. It is important thuatsf
we use the model of Tanaka & Takeuti (1988). In this modefimulation of light curves from objects others than stanshs
the set of ordinary dierential equations (ODE) for a stellaras QSOs, noise may by colored and then it is necessary to use

oscillator with nonlinear, nonadiabatic terms, reads a different type of noise, e.g. Poisson noise. The noise can be
dx described using a normal distribution
@’ G0) = —— exp (- ?/209) ®
= — a
% = a+puy+z o V2r
dz whereo is the variance and is the mean value of the mea-
@ - By — pz—-Qqy + syz (1) surement errors. For numerical simulations of the noish wit

) ) ) . normal distribution, we use the method.of Hamming (1962).
where the first two equations represent equations of motidn g; 45 necessary to set thefférent values of for each type

the IasF one is a stat'e equation with a nlonad.iabatic term. Wesignal in order to have similar/8 ratios. Data for synthetic
can adjust the behaviour of the model usinfijetent values of

a, B, 14, P, G, S. The system of ODE of the first order was numer-
ically solved with the Runge-Kutta method for twofférent Table 1. Parameters of the stellar pulsation model
sets of model parameters, the first one corresponding toethe p. ” V- 5 3 —
riodic regime with a two-limit cycle attractor and the sedon —
one to tﬁe aperiodic, chaotic r)égime with a strange attract eriodic -0.5 0505 32 05 10 02 0

o .. ’ . chaotic -05 05 05 40 05 10 03 O
similar to the Rossler type. The parameters are summairized
Table[1. We use the initial conditiongy(= 0.37,y = —0.249,
z = -0.174) for the chaotic solution. The initial conditions aréime series satisfy the conditian> 300, i.e. reasonably far
very close to the orbit of the attractor in phase space. We @way from the starting point (= 0). It is necessary to make
tain a time-dependence of the state variabl@s y(t), z(t) in  sure that the solution is relaxed away from the influence @f th
the form of a time series with an equidistant time step. Witial conditions.
choose one state variable, name(y), as a representation of It can be readily seen that chaotic and quasiperiodic oscil-
the measured variable. To simulate a synthetic signal ftwm tlations (see Fid.12) have very similar patterndfatient to the
quasiperiodic process, afffirent approach is employed. Thesimple periodic signal (two-limit cycle).
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Fig. 2. Upper left panel: x(t) solution of the ODE systerfi](1) for the periodic case with a-timit cycle. Upper right panel: x(t)
solution of equatior{2) for the quasiperiodic calsewer left panel: x(t) solution of the ODE systeni](1) for the chaotic case.
Lower right panel: Gaussian nois€|(3) with parameters- 0.1 andx = 0. All physical quantities are in arbitrary units.

3. Analysis of the signal and PDM only. Obviously, PDM and PWS techniques applied
) ) ) on a periodic signal detect corresponding frequenciesowtth
3.1. Classical period analysis any doubt, but, as we will show, afférent situation arises for

The most common techniques used for period searches &y@siperiodic and chaotic regimes.

the power spectral analysis (PWS), the modified Lomb peri- 1. Quasiperiodic signal. The PWS analysis of the
odogram (LPD), the phase dispersion minimalization (PDMjuasiperiodic signal produced by known incommensurate fre
and the string length method (SLM). In the first case, discrejuencies (see Taldlé 2) detects the frequencies used. Mawreov
Fourier transformation is applied to a dataset resulting init is possible to recognize the leading frequency, whichis i
power spectrum (for more details see m@msm. Bar casef, = V3. The noise in the periodogram in FIg. 4
unevenly sampled series it is better to use a modificationisfcaused by the simulated Gaussian noise of the signal. The
PWS, method LPD (see for more detnEQ?G). THRDM method yields a similar estimate of the input frequen-
third method binds data in a grid of phases and minimizegs, and the results also show some other frequenciesrthat a
phase dispersion statistics (see for more dem subharmonics or harmonics of the frequency set. The phase
11978; Lafler& Kinman |, 1965). The SLM method is similar taliagram in Fig[b (on the left) is folded with the leading fre-
the previous one (see Dworetsky , 1983), and the LPD methmuencyf,. Clearly, the structure is not a simple sine wave. It is
behaves like the PWS. So we limit on the two methods, PWSquasiperiodic, and hence it is composed of a set of harmon-
ics with slightly diterent phase. After accounting for Gaussian
noise, this dierence is smeared out.

Table 2. Parameters for the quasiperiodic signal 2. Chaotic signal. The results become much more interest-
_ ing for the chaotic signal. Again, both PWS and PDM meth-

X ods detect periods, as can be clearly seen in [Hig. 4. After
04 06 05 V5 V3 V2 01 0 some checks we can recognize the two longest independent

a1 ay az fl f2 f3 o
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Fig. 3. correlation integrald{4) for éierent lengthscales and embedding dimensioms The quasiperiodic case is in the left
panel, chaotic case is in the right panel.

periods.The power spectrum of the chaotic signal shows ttietail Kantz & Schreibérl (2004)) as
most significant frequencies together with the frequendégano N N
Nevertheless, low-level noise is present even if Gaussiésen (M e) = 2 Z Z o(e s —sill)
is not applied. It is the consequence of the chaotic behaviou ’ (N = Nmin)(N = Npyin — 1) “ !

i=1 j=i+1+Nmin

Theoretically, power spectra of the chaotic data are Comherem is the embedding dimensios. denotes the dela (t)m—
posed of an infinite number of frequencies. This is true, hm&'— ddin Iv tore is th II gn Ith I'm" rameterandN | B;h
ever, only if there is an infinite number of observations (seee g vectore IS € lenginscale parametera s (he
6, chap. 5). In reality, there is only a limited Fumqumber of points. A possible problem with temporal correla-
ber of observations,which are, furthermore, unevenly e@act'ons is overcome by excluding pairs that are too close ietim

o r(‘g_arametenmin). Before we apply the procedure for calcula-

quency derived; = 0.1179 is shown in FigJ5 (on the right).t'on of the correlation dimension to the noisy signal (ci@ot

In the phase diagram without Gaussian noise, we can rec%&_quasmenodm), itis necessary to clean the noisy daltés T
IS;done by using nonlinear noise reduction with locally con-

nize a two-wave structure in the phase plot. On the other,han nt roximations - the simple nonlinear filter desctib
when Gaussian noise is applied a simple noisy sine wave approximations - the simpie honiinear fiter descivg - -
3). The results of the calculation are shawn i

be identified. This is similar to the quasiperiodic case ltssu Fig.[3. The chaotic processes are characterized by a platea
although the data originated from a nonlinear chaotic @sce. 9. 13. Ic b 12 yap u

. . : in the plot of C(m, ) for different embedding dimensions (left
\év\?eerﬁezzrgga?Zigg;g?;;g%somer frequenéiets lead to panel Fig[B), which indicates a self-similar geometry. ekr

fit to this plateau region leads to the estimation of corretat
The above results clearly show that it is verffidult to dis- dimension
tinguish between chaotic and quasiperiodic cases usirigdoer Caim = 1.90+ 0.08. (5)

analysis only. Thus, we must look for other methods, which Cqhis value agrees with the typical value of the Rossler Bpe
help to resolve both processes. tractor. In the case of the quasiperiodic signal we canrest-id
tify the plateau region (right panel Hig.3). This indicatkat

there is no self-similar geometry for this type of the signal
3.2. Nonlinear analysis

For detailed analysis of the signal that can be generatedtyy n4' Summary

linear chaotic processes, we can use methods of nonlimear tAnalysis of synthetic signals simulating quasiperiodiad an
series analysis. These methods were developed for classifihaotic data led to the following findings:

tion and identification of chaotic phenomenonin time seofes 1) In the realistic case ( finite number of observations
the experimental data (see review Abarbanel ét al. ,|1998). with Gaussian noise), it is impossible to distinguish betwe

a indication of chaotic behaviour we can use topological iquasiperiodic and chaotic behaviour by classical methdds o
variants, namely the correlation dimension and Lyapunaov exeriod analysis.

ponents. Algorithms for numerical estimates of such invari 2) When the data contain large amounts of noise, the
ants from time series are described by Abarbanel et al. )19@Baotic or quasiperiodic character of the signal can be-over
and by Kantz & Schreiber (2004). In our case the indicator tifoked and a simple periodic solution with the strongest fre
chaotic behaviour is the correlation integral defined (seeem quency can be determined from the period analysis.
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3) In order to definitely rule out presence of chaos it is ne&chreiber, T., 1993, Phys. Rev. E 47, 2401
cessary to use a nonlinear time series analysis. Thus, we n&tsllingwerf, R. F. 1978, ApJ 224, 953
reconstruct the topologically similar phase portrait f #ys- Takeuti M. 1987, Ap&SS 136, 129
tem using the technique described by Abarbanel et al. (1998 naka, Y., & Takeuti, M. 1988, Ap&SS 148, 229
Then we must determine the invariants, such as the correla-
tion dimension or Lyapunov céigcients from the reconstructed
time series, and from their values we can decide if detestini
chaos is present in the data or not. However, both these proce
dures need better quality of data (noise, length of timesgri

4) We would like to draw attention to the fact that irregular
chaotic behaviour may be more usual in astronomical data tha
thought before, and that some systems that were identified as
quasiperiodic may actually be chaotic ones.
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Fig.4. Upper panels. Power spectra constructed for quasiperiodic oscillatmmthe left) described by[{2) and the chaotic case
of stellar oscillation ¢n the right) described by[{1)Bottom panels: Periodogram constructed using the phase dispersion mini-
malization method for the quasiperiodic casa (he left) and chaotic caseof) the right). For the frequency we used arbitrary
units.
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Fig. 5. Left upper panel: Phase diagram for the quasiperiodic case and the domirequencyf, = V3 without noise Right
upper panel: Final phase diagram for the frequenfiy= 0.1176 of the chaotic caséeft bottom panel: The same as the left
upper panel but with Gaussian noigkght bottom panel: The same as the right upper panel, but with Gaussian nois¢hén
bottom panels both diagrams are similar, showing a simpk-wiave pattern. All physical quantities are in arbitramjts!
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