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False periods in complex chaotic systems
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ABSTRACT

Aims. Astrophysical objects frequently exhibit some irregularities or complex behaviour in their light curves. We focus primarily on hot stars,
where both radial and non-radial pulsations are observed. One of the primary research goals is to determine physical parameters of stellar
pulsations by analyzing their light curves or spectra, focusing on periodic or quasiperiodic behaviour.
Methods. We analyse the feasibility of classical methods for period searches in a nonlinear chaotic system, such as the Rössler system, where
a period does not exist at all. As an astrophysical application of the chaotic system, we utilize a simple model of stellarpulsation with two
different sets of parameters corresponding to periodic and chaotic behaviour. For both models we create a synthetic signal,and then apply
widely used methods for period finding, such as the phase dispersion method and periodograms. For comparison, a quasi-periodic signal is
employed as well.
Results. The period analysis indicates periods even for the chaotic signal. Such periods are apparently spurious. This implies that it is very
problematic to distinguish chaotic and quasiperiodic process by such an analysis only.
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1. Introduction

Variability of astronomical sources like stars is an important
aspect of their observation. We can detect variability in their
light and/or spectra on different timescales. Dynamical pulsa-
tions, radial or non-radial, may be one of the main sources of
intrinsic variability in many types of stars. As was shown by
Eddington (1919), stars may exhibit pulsation due to the unsta-
ble layers in the stellar envelope. The first theoretical modelling
of pulsations predicted regular oscillations and such modelling
was succesfully applied to objects like classical Cepheids. But
later, observations indicated other types of pulsating stars, e.g.
Population II Cepheids, which in some cases exhibit irregular
patterns in observational data.

There was no reliable explanation of such variability un-
til the pioneering work of Baker et al. (1966), which showed
that a simple one-zone model of stellar oscillators with a
nonlinear adiabatic term can in some specific conditions pro-
duce irregular pulsation. Similar results were also obtained
by Moore & Spiegel (1966), Auvergne & Baglin (1985) and
Auvergne (1988). The disadvantage of these models is their
dynamically unstable equilibrium state, which seems to be non-
realistic for stars. Takeuti (1987) and later Saitou & Takeuti
(1989) showed that similar, yet dynamically stable and more
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precise one-zone model also produced chaotic solutions, with a
strange attractor similar to the Rössler one (see Rössler, 1976).
Detailed, more realistic calculations of the state equation for
helium ionization in a one zone model, which was performed
by Buchler & Regev (1982), confirmed that pulsation instabil-
ity may lead to chaotic behaviour.

Goupil et al. (1986) studied light curves of the pulsating
white dwarf PG 1351+489 and found strong evidence of pe-
riod doubling. Period doubling is a scenario where a sys-
tem that primarily oscillates with a fundamental frequency
ν0, after change of the control parameter oscillates with fre-
quencyν0/2 (see Helleman , 1980; Gurel & Rössler, 1979).
Cascades of period doubling is a typical transition routes to
chaotic behaviour. Such an effect is typical of chaotic sys-
tems. Serre et al. (1996) analysed long time-series of photo-
metric observations of the variable star R Scuti, one possible
candidate pulsating star which exhibits a strange irregular light
curve. By using the method of global flow reconstruction (see
more about global time series predictions in Brown (1993),
Abarbanel et al. (1994)), they were able to reproduce the ob-
servation with the chaotic dynamics very well. More details
and examples of chaotic pulsations can be found in Buchler
(1987). These clearly show that there is both theoretical and
experimental evidence of quasiperiodic or chaotic behaviour in
variable stars. The problem is how to distinguish between these
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Fig. 1. Left panel: Chaotic attractor constructed from a numerical solution of the ODE system (1) with the parameters from Table
1. - chaotic case.Right panel: Two-limit cycle attractor constructed from numerical solution of (1) with the parameters from
Table 1. - periodic case.

two possibilities, if only limited time series are available, often
very unevenly sampled. In other words, what will be the result,
if classical astronomical tools for the period searches, such as
periodograms, the phase dispersion minimalization methodor
more sophisticated techniques are applied to data originating
from quasiperiodic or chaotic sources. In the next paragraphs
we tackle the problem using synthetic data.

2. Generation of synthetic time series

As an example of irregular stellar variability due to pulsation
we use the model of Tanaka & Takeuti (1988). In this model,
the set of ordinary differential equations (ODE) for a stellar
oscillator with nonlinear, nonadiabatic terms, reads

dx
dt
= y

dy
dt
= α + µy + z

dz
dt
= −βy − pz − qy + syz (1)

where the first two equations represent equations of motion and
the last one is a state equation with a nonadiabatic term. We
can adjust the behaviour of the model using different values of
α, β, µ, p, q, s. The system of ODE of the first order was numer-
ically solved with the Runge-Kutta method for two different
sets of model parameters, the first one corresponding to the pe-
riodic regime with a two-limit cycle attractor and the second
one to the aperiodic, chaotic regime with a strange attractor
similar to the Rössler type. The parameters are summarizedin
Table 1. We use the initial conditions (x0 = 0.37,y = −0.249,
z = −0.174) for the chaotic solution. The initial conditions are
very close to the orbit of the attractor in phase space. We ob-
tain a time-dependence of the state variablesx(t), y(t), z(t) in
the form of a time series with an equidistant time step. We
choose one state variable, namelyx(t), as a representation of
the measured variable. To simulate a synthetic signal from the
quasiperiodic process, a different approach is employed. The

signal is modeled by the following equation

xquasi(t) = a1 sin (f1t) + a2 sin (f2t) + a3 sin (f3t) (2)

wherea1, a2, a3 are amplitudes of incommensurate modes with
frequenciesf1, f2, f3. Their values are summarized in Tables 1
and 2. These parameters are carefully chosen in order to obtain
similar dependencies ofx(t) and xquasi(t) for the chaotic and
quasiperiodic case, namely amplitudes of oscillations (see Fig.
2). The computed signal for each type of process is plotted in
Fig. 2. Since we want to simulate real measurements, we add a
synthetic signal with Gaussian noise. It is important that for a
simulation of light curves from objects others than stars, such
as QSOs, noise may by colored and then it is necessary to use
a different type of noise, e.g. Poisson noise. The noise can be
described using a normal distribution

G(x) =
1

σ
√

2π
exp ((x − x)2/2σ2) (3)

whereσ is the variance andx is the mean value of the mea-
surement errors. For numerical simulations of the noise with a
normal distribution, we use the method of Hamming (1962).
It was necessary to set the different values ofσ for each type
of signal in order to have similar S/N ratios. Data for synthetic

Table 1. Parameters of the stellar pulsation model

α β µ p q s σ x
periodic -0.5 0.5 0.5 3.2 0.5 1.0 0.2 0
chaotic - 0.5 0.5 0.5 4.0 0.5 1.0 0.3 0

time series satisfy the conditiont > 300, i.e. reasonably far
away from the starting point (t = 0). It is necessary to make
sure that the solution is relaxed away from the influence of the
initial conditions.

It can be readily seen that chaotic and quasiperiodic oscil-
lations (see Fig. 2) have very similar patterns, different to the
simple periodic signal (two-limit cycle).
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Fig. 2. Upper left panel: x(t) solution of the ODE system (1) for the periodic case with a two-limit cycle.Upper right panel: x(t)
solution of equation (2) for the quasiperiodic case.Lower left panel: x(t) solution of the ODE system (1) for the chaotic case.
Lower right panel: Gaussian noise (3) with parametersσ = 0.1 andx = 0. All physical quantities are in arbitrary units.

3. Analysis of the signal

3.1. Classical period analysis

The most common techniques used for period searches are
the power spectral analysis (PWS), the modified Lomb peri-
odogram (LPD), the phase dispersion minimalization (PDM),
and the string length method (SLM). In the first case, discrete
Fourier transformation is applied to a dataset resulting ina
power spectrum (for more details see e.g. Scargle , 1982). For
unevenly sampled series it is better to use a modification of
PWS, method LPD (see for more details Lomb , 1976). The
third method binds data in a grid of phases and minimizes
phase dispersion statistics (see for more details Stellingwerf,
1978; Lafler& Kinman , 1965). The SLM method is similar to
the previous one (see Dworetsky , 1983), and the LPD method
behaves like the PWS. So we limit on the two methods, PWS

Table 2. Parameters for the quasiperiodic signal

a1 a2 a3 f1 f2 f3 σ x
0.4 0.6 0.5

√
5
√

3
√

2 0.1 0

and PDM only. Obviously, PDM and PWS techniques applied
on a periodic signal detect corresponding frequencies without
any doubt, but, as we will show, a different situation arises for
quasiperiodic and chaotic regimes.

1. Quasiperiodic signal. The PWS analysis of the
quasiperiodic signal produced by known incommensurate fre-
quencies (see Table 2) detects the frequencies used. Moreover,
it is possible to recognize the leading frequency, which is in
our casef2 =

√
3. The noise in the periodogram in Fig. 4

is caused by the simulated Gaussian noise of the signal. The
PDM method yields a similar estimate of the input frequen-
cies, and the results also show some other frequencies that are
subharmonics or harmonics of the frequency set. The phase
diagram in Fig. 5 (on the left) is folded with the leading fre-
quencyf2. Clearly, the structure is not a simple sine wave. It is
a quasiperiodic, and hence it is composed of a set of harmon-
ics with slightly different phase. After accounting for Gaussian
noise, this difference is smeared out.

2. Chaotic signal. The results become much more interest-
ing for the chaotic signal. Again, both PWS and PDM meth-
ods detect periods, as can be clearly seen in Fig. 4. After
some checks we can recognize the two longest independent
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Fig. 3. correlation integrals (4) for different lengthscalesǫ and embedding dimensionsm. The quasiperiodic case is in the left
panel, chaotic case is in the right panel.

periods.The power spectrum of the chaotic signal shows the
most significant frequencies together with the frequency noise.
Nevertheless, low-level noise is present even if Gaussian noise
is not applied. It is the consequence of the chaotic behaviour.

Theoretically, power spectra of the chaotic data are com-
posed of an infinite number of frequencies. This is true, how-
ever, only if there is an infinite number of observations (see
Regev , 2006, chap. 5). In reality, there is only a limited num-
ber of observations,which are, furthermore, unevenly spaced.
The phase diagram constructed for the most significant fre-
quency derivedf1 = 0.1179 is shown in Fig. 5 (on the right).
In the phase diagram without Gaussian noise, we can recog-
nize a two-wave structure in the phase plot. On the other hand,
when Gaussian noise is applied a simple noisy sine wave can
be identified. This is similar to the quasiperiodic case results,
although the data originated from a nonlinear chaotic process,
where period has no meaning. Other frequenciesf2, f3 lead to
even less clear phase diagrams.

The above results clearly show that it is very difficult to dis-
tinguish between chaotic and quasiperiodic cases using period
analysis only. Thus, we must look for other methods, which can
help to resolve both processes.

3.2. Nonlinear analysis

For detailed analysis of the signal that can be generated by non-
linear chaotic processes, we can use methods of nonlinear time
series analysis. These methods were developed for classifica-
tion and identification of chaotic phenomenon in time seriesof
the experimental data (see review Abarbanel et al. , 1993). As
a indication of chaotic behaviour we can use topological in-
variants, namely the correlation dimension and Lyapunov ex-
ponents. Algorithms for numerical estimates of such invari-
ants from time series are described by Abarbanel et al. (1993)
and by Kantz & Schreiber (2004). In our case the indicator of
chaotic behaviour is the correlation integral defined (see more

detail Kantz & Schreiber (2004)) as

C(m, ǫ) =
2

(N − nmin)(N − nmin − 1)

N∑

i=1

N∑

j=i+1+nmin

θ(ǫ − ||si − s j||)

(4)
wherem is the embedding dimension,sn denotes the delay em-
bedding vector,ǫ is the lengthscale parameter, andN is the
number of points. A possible problem with temporal correla-
tions is overcome by excluding pairs that are too close in time
(parameternmin). Before we apply the procedure for calcula-
tion of the correlation dimension to the noisy signal (chaotic
or quasiperiodic), it is necessary to clean the noisy data. This
is done by using nonlinear noise reduction with locally con-
stant approximations - the simple nonlinear filter described by
Schreiber (1993). The results of the calculation are shown in
Fig. 3. The chaotic processes are characterized by a plateau
in the plot ofC(m, ǫ) for different embedding dimensions (left
panel Fig. 3), which indicates a self-similar geometry. A linear
fit to this plateau region leads to the estimation of correlation
dimension

Cdim = 1.90± 0.08. (5)

This value agrees with the typical value of the Rössler typeat-
tractor. In the case of the quasiperiodic signal we cannot iden-
tify the plateau region (right panel Fig.3). This indicatesthat
there is no self-similar geometry for this type of the signal.

4. Summary

Analysis of synthetic signals simulating quasiperiodic and
chaotic data led to the following findings:

1) In the realistic case ( finite number of observations
with Gaussian noise), it is impossible to distinguish between
quasiperiodic and chaotic behaviour by classical methods of
period analysis.

2) When the data contain large amounts of noise, the
chaotic or quasiperiodic character of the signal can be over-
looked and a simple periodic solution with the strongest fre-
quency can be determined from the period analysis.



V. Votruba et al.: False periods in complex chaotic systems 5

3) In order to definitely rule out presence of chaos it is nec-
cessary to use a nonlinear time series analysis. Thus, we must
reconstruct the topologically similar phase portrait of the sys-
tem using the technique described by Abarbanel et al. (1993).
Then we must determine the invariants, such as the correla-
tion dimension or Lyapunov coefficients from the reconstructed
time series, and from their values we can decide if deterministic
chaos is present in the data or not. However, both these proce-
dures need better quality of data (noise, length of time series).

4) We would like to draw attention to the fact that irregular
chaotic behaviour may be more usual in astronomical data than
thought before, and that some systems that were identified as
quasiperiodic may actually be chaotic ones.
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Fig. 4. Upper panels: Power spectra constructed for quasiperiodic oscillation(on the left) described by (2) and the chaotic case
of stellar oscillation (on the right) described by (1).Bottom panels: Periodogram constructed using the phase dispersion mini-
malization method for the quasiperiodic case (on the left) and chaotic case (on the right). For the frequency we used arbitrary
units.
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Fig. 5. Left upper panel: Phase diagram for the quasiperiodic case and the dominant frequencyf1 =
√

3 without noise.Right
upper panel: Final phase diagram for the frequencyf1 = 0.1176 of the chaotic case.Left bottom panel: The same as the left
upper panel but with Gaussian noise.Right bottom panel: The same as the right upper panel, but with Gaussian noise. Onthe
bottom panels both diagrams are similar, showing a simple sine-wave pattern. All physical quantities are in arbitrary units.
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