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ABSTRACT

We present an efficient and robust method of light curve analysis of variable stars.
While several studies have successfully employed Fourier decomposition technique for
the structural analysis of a variety of light curves, a few studies have performed a
principal component analysis (PCA) by using Fourier components as inputs to reduce
the dimensionality further. In this paper, we employ the PCA technique to a large
database of RR Lyrae and Cepheid light curves directly and compare the results with
those obtained by the Fourier decomposition technique. We show that the first few
principal components (PCs) allow us to extract most of the information when the
input matrix is an array of magnitudes at different epochs rather than the Fourier
coefficients. The first few PCs are thus enough to reconstruct the original light curves,
reducing the data dimensionality by a factor of 2 to 3 compared to the Fourier co-
efficients. The analysis enables us to separate out the modes of RR Lyrae stars and
to look for previously known and suspected resonances of Cepheid variables. We also
demonstrate that the PCA technique can be used to classify variables into different
classes in an automated, unsupervised way, a feature that has immense potential for
large databases of the future.
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1 INTRODUCTION

The recent interest on the structure and properties of the
light curve of variable stars has increased a lot because of
the large flow of observational data from different variable
star projects like OGLE, MACHO, ASAS and NSVS. In ad-
dition, new techniques for tagging variable objects expected
in huge numbers from satellite missions like CoRoT, Kepler,
and Gaia in a robust and automated manner are being ex-
plored (Debosscher et al. 2007, Sarro et al. 2009). Fourier
decomposition technique is a reliable and efficient way of
describing the structure of light curves of variable stars.
Schaltenbrand & Tammann (1971) derived UBV light curve
parameters for 323 galactic Cepheids by Fourier analysis.
The first systematic use of Fourier technique was made by
Simon (1979) for analyzing the observed light variations and
radial velocity variation of AI Velorum. The first-order am-
plitudes and phases from the Fourier fits were then compared
with those obtained from linear adiabatic pulsation models
to obtain the mass of AI Vel. Simon & Lee (1981) made
the first attempt to reconstruct the light curves of Cepheid
variables using the Fourier decomposition and to describe
the Hertzsprung progression in Cepheid light curves. The
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method has been applied extensively by various authors for
light curve reconstruction, mode discrimination and classifi-
cation of pulsating stars (Antonello et al. 1986, Mantegazza
& Poretti 1992, Hendry, Tanvir & Kanbur 1999, Poretti
2001, Ngeow et al. 2003, Moskalik & Poretti 2003, Jin et
al. 2004, Tanvir et al. 2005). However, Fourier decomposi-
tion by itself is not perfectly suitable for classification of
variable stars in large databases as the method works for
individual stars, but can be used as a preprocessor for other
automated schemes (Kanbur et al. 2002, Kanbur & Mariani
2004, Sarro et al. 2009).

The principal component analysis transforms the orig-
inal data set of variables by way of an orthogonal transfor-
mation to a new set of uncorrelated variables or principal
components. The technique amounts to a straightforward
rotation from the original axes to the new ones and the the
principal components are derived in decreasing order of im-
portance (Singh et al. 1998). The first few components thus
account for most of the variation in the original data (Chat-
filed & Collins 1980, Murtagh & Heck 1987). The technique
has been used for stellar spectral classification (Murtagh
& Heck 1987, Storrie-Lombardi et al. 1994, Singh, Gulati
& Gupta 1998), QSO spectra (Francis et al. 1992) and for
galaxy spectra (Sodré & Cuevas 1994, Connolly et al. 1995,
Lahav et al. 1996, Folkes, Lahav & Maddox 1996). There
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have been a number of studies on the use of PCA in analyz-
ing Cepheid light curves (Kanbur et al. 2002) and RR Lyrae
light curves (Kanbur & Mariani 2004). In both these stud-
ies, the input data to the PCA are the Fourier coefficients
rather than the light curves themselves. Nevertheless, it was
noted that the PCA was able to reproduce the light curves
with about half the number of parameters (PCs) needed by
the Fourier technique.

In this paper, we show for the first time, the use of
PCA directly on the light curve data of more than 13,000
stars (RRab, RRc, fundamental and first overtone Cepheids)
taken from the literature and different existing databases.
We also use Fourier decomposition technique to these light
curve data to determine the Fourier decomposition param-
eters. We use (i) Fourier coefficients (ii) Fourier coefficients
as inputs to PCA and (iii) light curves (phase vs. magni-
tude) as input to PCA and compare relative performance of
their ability to separate out the modes of pulsating stars,
finding resonances in Cepheids and in classification of dif-
ferent types of variables. We have performed independent
automated Fourier analysis of all the data sets described
in the paper using a computer code developed by us. We
have shown that PCA is a robust and powerful tool for the
detection of changes in the structure of light curves and
resonances. The PCA technique has also been used in the
reconstruction of the light curves of Cepheids as well as RR
Lyraes. Another aim of this paper is to analyze the perfor-
mance of PCA as a fast, automated and unsupervised classi-
fication tool of variable stars. We present Fourier decompo-
sition technique using Levenberg-Marquardt algorithm for
non-linear least square fitting (Press et al. 1992) in section
2. We also describe the unit-lag auto-correlation function
for finding out the optimal order of the fit and discuss the
criteria for selection of stars for analysis. Section 3 describes
the Principal component analysis for dimensionality reduc-
tion and light curve reconstruction. Section 4 describes the
results obtained by the Fourier and PCA technique applied
to RR Lyraes and Cepheids. Lastly in section 5, we present
important conclusions of the study.

2 FOURIER DECOMPOSITION TECHNIQUE

Since the light curves of the variable stars are periodic, they
can be written as a sum of cosine and sine series :

m(t) = A0 +

N
∑

i=1

ai cos(iωt) +

N
∑

i=1

bi sin(iωt), (1)

where m(t) is the observed magnitude at time t, A0 is the
mean magnitude, ai, bi are the amplitude components of
(i − 1)th harmonic, ω=2π/P is the angular frequency, and
N is the order of the fit. Obviously, equation (1) has 2N +1
unknown parameters which require at least the same number
of data points to solve for these parameters. Equivalently,
we can write equation (1) as

m(t) = A0 +

N
∑

i=1

Ai cos(iωt + φi), (2)

where Ai =
√

ai
2 + bi

2 and tanφi = −bi/ai. Since period
is known, the observation time can be folded into phase (Φ)
as (cf. Ngeow et al. 2003)

Φ =
(t − t0)

P
− Int

(

t − t0
P

)

,

where t0 is the epoch of maximum light. The value of Φ is
from 0 to 1, corresponding to a full cycle of pulsation. Hence,
equations (1) and (2) can be written as (Schaltenbrand &
Tammann 1971)

m(t) = A0 +

N
∑

i=1

ai cos(2πiΦ(t)) +

N
∑

i=1

bi sin(2πiΦ(t)), (3)

m(t) = A0 +

N
∑

i=1

Aicos[2πiΦ(t) + φi], (4)

with relative Fourier parameters as

Ri1 =
Ai

A1

; φi1 = φi − iφ1

where i > 1. The combination of coefficients Ri1, φi1 where
i = 2, 3, 4... can be used to describe the progression of light
curve shape in case of Cepheids, RR Lyraes and other vari-
ables and can be used for variable star classification. In Table
1 we list the variable star data that has been subjected to
the analysis.

The estimation of optimal number of terms to be used
in the Fourier decomposition of the individual light curve
is not straight forward. As has been pointed out by Pe-
tersen (1986), if N is chosen too small, a larger number
of Fourier parameters can be calculated from a given ob-
servation and the resulting parameters will have systematic
deviations from the best estimate. On the other hand, if N
is chosen too large, we are fitting the noise. Following Baart
(1982), Petersen (1986) adopted the calculation of unit-lag
auto-correlation of the sequence of the residuals in order to
decide the right N so that the residuals consist of noise only.
It as defined as

ρ :=

∑n

j=1
(vj − v̄) (vj+1 − v̄)

∑n

j=1
(vj − v̄)2

, where vj is the jth residual, v̄ is the average of the residuals
and j = 1, ....n are the number of data points of a light
curve. The value of v is basically the residuals of the fitted
light curve

v = m(t) − [A0 +

N
∑

i=1

Aicos(2πiΦ(t) + φi)]

. It should be noted that for the calculation of ρ we must
choose the ordering of vj given by increasing phase values
rather than ordering given by the original sequence. A def-
inite trend in the residuals will result in a value of ρ equal
to 1, while uncorrelated residuals give smaller values of ρ.
In the idealized case of residuals of equal magnitude with
alternating sign, ρ will be approximately equal to −1. The
suitable value of ρ can be chosen using the Baart condition.
According to this, a value of ρ > [n − 1]−1/2 (where n is
the number of observations) is an indication that it is likely
that a trend is present, whereas a value of ρ 6 [2(n−1)]−1/2

indicates that it is unlikely that a trend is present. Baart
therefore used the following auto-correlation cut-off toler-
ance

ρc = ρ(cut) = [2(n − 1)]−1/2 (5)
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Table 1. Data selected for the present analysis

Data References No. of stars No. of good data

I. RR Lyrae

A. I band (SMC RRab) Soszyński, I. et al. (2002) 479 478
B. I band (LMC RRab) Soszyński, I. et al. (2003) 5835 5797

C. I band (LMC RRc) Soszyński, I. et al. (2003) 1751 1751

II. Fundamental Cepheids

A. I band (LMC) Soszyński, I. et al.(2008) 1804 1697
B. I band (SMC) Soszyński, I. et al.(2003) 1319 1255
C. V band (Galaxy) Berdnikov (2008) 528 389
D. V band (Galaxy) Moffett & Barnes (1984) 111 101
E. V band (LMC) Martin et al. (1979) 56 6
F. V band (LMC+SMC) Moffett et. al (1998) 22 19

III. Overtone Cepheids

A. I band (LMC) Soszyński, I. et al. (2008) 1228 1148
B. I band (SMC) Udalski, A. et al. (1999) 828 800

Figure 1. Unit-lag auto-correlation function of LMC and SMC
RR Lyrae stars. The solid continuous curve is the best-fit normal
distribution.

While computing the Fourier parameters of the light
curve data for the present analysis we have taken care of
the fact that the Baart’s condition is satisfied. A histogram
plot of d satisfying the Baart’s condition for the RR Lyrae
data sets of the present analysis is shown in Fig 1. The order
of the fit (N) is 4 for SMC RR Lyraes and 5 for LMC RR
Lyraes in data set I.

All the data sets in Table I are finally fitted with the
optimal order of the fit and the fitted light curves are used
to derive the Fourier phase and amplitude parameters from
the Fourier coefficients. The goodness of fit is based on the
χ2 minimization where a value of χ2

ν 6 5 was used to select

the stars having good phase coverage and smoothly varying
data points, where ν is the degree of freedom and is equal
to the number of data points minus the number of parame-
ters used to fit the data. Generally a χ2

ν ∼ 1 indicates good
measurement of the fitted data points. However, we have no-
ticed that the presence of an outlier sometimes in the data
set increases the χ2

ν value to some extent. Therefore, such
light curves were passed through visual inspection and val-
ues of χ2

ν checked. All light curves with χ2
ν > 5 were rejected.

The number of stars with good data are listed in Table I.
Fig. 2 shows the examples of good and bad Cepheid light
curves. Fig. 3 shows the fitted light curves of fundamental
mode Cepheids. Although the phase coverage for examples
of these long period Cepheids is poor, the fits are reasonably
good.

Thus the Fourier decomposition of the data sets in Table
1 is done by the computer code we have developed and the
Fourier decomposition parameters (ai, bi) have been com-
puted based on the optimal order of the fit by the calcu-
lation of the unit-lag auto-correlation function. The data
having sparse phase coverage and noise are rejected based
on the high χ2

ν between the fitted and the original light
curves. Figs. (4) & (5) show the histograms of χ2

ν for all
the 8026 RR Lyrae stars and 5415 Cepheids respectively.

3 PRINCIPAL COMPONENT ANALYSIS

The principal component analysis transforms the original
set of p variables by an orthogonal transformation to a new
set of uncorrelated variables or principal components (PCs).
It involves a simple rotation from the original axes to the
new ones resulting in principal components in decreasing
order of importance. The first few q components (q ≪ p)
contain most of the variation in the original data (Chatfield
& Collins 1980, Murtagh & Heck 1987). This feature of the
PCA has been used in astronomical data analysis primarily
for the purpose of reducing the dimensionality of the data



4 Deb & Singh

Figure 2. Examples of good (a) and bad (c) Cepheid data sets and their Fourier fitted light curves are shown in (b) and (d) respectively.
Data sets such as (c) with χν

2 > 5.0 have been rejected for analysis for both Cepheids and RR Lyrae variables.

Figure 3. Fitted light curves for fundamental mode long period Cepheids from Moffett et al. (1998). Although the phase coverage is
poor, the fits are reasonably good. The lower right panel shows the example of a short period fundamental mode Cepheid from OGLE-III
database which has a good phase coverage.

and as a preprocessor for other automated techniques like
Artificial Neural Networks (ANN). The application of PCA
to the light curve analysis of variable stars has been limited
to a few studies (Hendry et al. 1999, Kanbur et al. 2002,
2004, Tanvir et al. 2005). In the following, we briefly describe
the transformation.

Let mij be the p magnitudes corresponding to n light
curves. Let us define the n × p matrix by X = xij ,

xij =
mij − m

sj
√

n
,

with

m =

n
∑

i=1

mij,

and

sj
2 =

1

n

n
∑

i=1

(mij − mj)
2,

where mj is the mean value and sj is the standard deviation.
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Figure 4. Histogram of χν
2 for the 8026 RR Lyrae stars used in

the analysis.

Figure 5. Histogram of the χν
2 for the 5415 Cepheids (Data sets

II and III) used in the analysis.

Using such standardization we find the principal components
from the correlation matrix (cf. Murtagh & Heck 1987)

Cjk =

n
∑

i=1

xijxjk =
1

n

n
∑

i=1

(mij − mj)(mik − mk)/(sjsk), (6)

with the axis of maximum variance being the largest eigen-
vector e1 associated with the largest eigenvalue λ1 of the
equation

Ce1 = λ1e1. (7)

The next (second) axes is to be orthogonal to the first and
another solution of equation (7) gives the second largest

Table 2. The first 4 eigenvectors, their percentage of variance
and the cumulative percentages of variance of the 478 SMC RRab
stars of the OGLE data base. The input matrix for the PCA is
the Fourier coefficients (ai, bi, i=1,4) for the data set IA in Table
I.

Component Eigenvalue Percentage Cum. Percentage

1 5.76 71.94 71.94
2 0.94 11.70 83.64
3 0.68 8.49 92.13
4 0.24 2.97 95.10

eigenvalue λ2 and the corresponding eigenvector or the prin-
cipal component e2. Hence the proportion of the total vari-
ation accounted by the jth component is λj/p, where p is
also the sum of the eigenvalues (Singh et al. 1998).

Let us suppose that the first q principal components
are sufficient to retain the information on the original p
variables. Therefore, we now have a (n × q) matrix Eq of
eigenvectors. The projection vector Z onto the q principal
components can be found by

Z = xEp, (8)

where x is vector of magnitudes defined by

xij sj
√

n + m = mij,

and can be represented by

x = ZEp
T. (9)

We obtain the final light curve xrec by multiplying x
with sj

√
n and adding the mean. Z is a (n × q) matrix and

Ep
T is a (q × p) matrix and hence the reconstructed light

curve is the original (n × p) matrix.

4 ANALYSIS OF LIGHT CURVES

Having determined the Fourier coefficients (ai, bi) for all the
data given in Table I, one can apply the PCA procedure to
various data sets separately by taking these Fourier coeffi-
cients as input parameters. The input matrix to the PCA
thus contains (ai, bi) determined for different data sets. We
have computed the PCs from the direct light curves as well.
With the phase (Φ) as epoch for each light curve now avail-
able, we interpolate and obtain 100 values of the magnitude
for phase 0 to 1 in steps of 0.01. Therefore, each light curve
now consists of 100 data points as magnitude with the av-
erage magnitude subtracted from each data point.

The analysis of light curves of different classes of
RR Lyrae and Cepheids is thus carried out by using the
following three new processed sets of parameters:

(a) Fourier coefficients (ai, bi),
(b) PCs using (ai, bi) as input,
(c) PCs with 100 values of magnitude from phase 0 to 1 as
input.

Reconstruction of some of the light curves in each of
the above processed data sets are also done to show how
PCs describe the light curve shape effectively and smoothly
with only few components. As an example, light curves of
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Figure 6. Reconstruction of the light curves of some RR Lyrae stars from data set IA using Fourier decomposition (solid lines) and
PCA (dashed lines). The input matrix for the PCA is the Fourier coefficients (ai, bi, i=1,4) for the data set IA.

a majority of the 478 RRab stars from the OGLE data
base (Soszyński et al. 2002) are completely described by the
fourth order Fourier fit which has been justified by calcu-
lating the unit-lag auto-correlation function satisfying the
Baart’s condition. When we perform the PCA analysis on
the (478 × 8) matrix of Fourier parameters, we find that 95
percent of the variance in the data is contained in the first
four principal components (Table 2). Fig. 6 shows the re-
construction of some I band SMC RRab light curves using
Fourier coefficients and the first four PCs. The input ma-
trix for the PCA is the Fourier coefficients (ai, bi, i = 1, 4).
Therefore, nearly half of the parameters (PCs) are required
as compared to the Fourier coefficients.

In Fig. 7 we have shown the reconstruction of LMC RR
Lyrae light curves using the first 1, 5, 7 and 10 PCs. Table
3 shows the PCA results on an (7548 × 100) array of 7548
stars with 100 I band magnitude values between phase 0 and
1. More than 99 percent of the variance is contained in the
first 7 PCs. Data compression ratio is of the order of 13 : 1.

Let us examine the relative merit of applying PCA on
the Fourier coefficients and on the light curves directly. In
Fig. 8, we have plotted the first principal component com-
puted using 8 Fourier coefficients against the Period and
the amplitude of 478 SMC RRab stars of data set IA (Table
1). We can easily see that the first principal component is
correlated with the amplitude as well as the period. It is ev-
ident that the first PC is a good indicator of the amplitude
of the RR Lyrae stars although there is a spread in PC1
at lower amplitudes (Fig. 8a). In Fig. 9a,b we see a similar
trend when the PC1 is plotted against period and Ampli-
tude of 7548 LMC RRab and RRc stars. The log (Period)
vs. PC1 (first principal component) plot in Fig. 9a shows
how well the short period RRc variables are separated from
the RRab variables. However, PCA applied to Fourier coeffi-
cients is unable to separate the amlitudes of these two classes
of variable stars (Fig. 9b). In Fig. 9c, we have plotted the
amplitude vs. PC1 where PCs have been computed from the

Table 3. The first 11 eigenvectors, their percentage of variance
and the cumulative percentages of variance of the 7548 RR Lyrae
stars in LMC of the OGLE data base. The input matrix is an
(7548 × 100) array .

Component Eigenvalue Percentage Cum. Percentage

1 60.27 60.27 60.27
2 26.63 26.63 86.90
3 4.64 4.64 91.54
4 2.20 2.20 93.74
5 1.41 1.41 95.15
6 1.25 1.25 96.40
7 1.09 1.09 97.49
8 0.84 0.84 98.33
9 0.76 0.76 99.09
10 0.56 0.56 99.65
11 0.29 0.29 99.94

direct light curves instead of through Fourier coefficients. In
this case, the amplitudes appear to be better separated for
RRab and RRc stars, although there is an overlap at lower
amplitudes. Fig. 10 shows the Period against the amplitude
and the first three PCs. Again both the groups of stars are
well separated by the first three PCs. In the subsequent anal-
ysis, we consolidate the fact that PCA applied on the direct
light curve of variable stars can act as a robust and power-
ful classification tool for variable stars as well as extremely
useful for structural analysis of their light curves.

4.1 Structural Analysis & Classification

We use the light curve data for 3467 fundamental mode clas-
sical Cepheids from various sources as mentioned in Table
1 (data set II). Majority of the data used in the analysis
are from OGLE database. The Fourier decomposition of all
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Figure 7. Reconstruction of RR Lyrae light curves using the first 1, 5, 7 and 10 principal components. The input matrix is an array
of 7548 rows (stars) and 100 columns (magnitudes from phase 0 to 1). The sum of Eigenvalues is 100, the number of attributes (I band
magnitudes).

Figure 8. (a)First principal component (PC1) against Ampli-
tude, (b) and (c) show the Amplitude and PC1 plotted as a func-
tion of log (period) in days for SMC RRab stars respectively. The
input matrix for the PCA is the Fourier coefficients (ai, bi, i=1,4)
for the data set IA.

the 3467 Cepheid light curves has been independently done
by us for the calculation of the Fourier decomposition pa-
rameters as described in Sec.2. We have seen that all the
Cepheid light curves selected in the present study give sat-
isfactory light curve shape with no numerical bumps or wig-
gles when reconstructed using the Fourier parameters. PCA
is performed on an input matrix consisting of a 3467 × 100
array corresponding to 100 magnitudes from phase 0 to 1

Figure 9. (a) PC1 versus log (Period) for LMC RR Lyrae stars
(Data set IB and IC). The input matrix for the PCA is the Fourier
coefficients (ai, bi, i=1,5). Open circles are LMC RRab stars and
crosses are LMC RRc stars which are well separated. (b) PC1
versus Amplitude for the data set as in (a). Low amplitude RRc
stars are not separated. (c) PC1 versus Amplitude. The input ma-
trix is an array of 7548 rows (stars) and 100 columns (magnitudes
from phase 0 to 1).

for 3467 fundamental mode Cepheids. The result of the PCA
output is shown in Table 4. We see that first six PCs are able
to explain nearly 99 percent of the variance in the data. We
do not use the Fourier parameters for the PCA analysis.

Kanbur et al. (2002) have tried to explain the the res-
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Figure 10. Amplitude and First three principal components versus log (Period) for LMC RR Lyrae stars (Data set IB and IC). Open
circles are LMC RRab stars and crosses are LMC RRc stars which are well separated. The input matrix is an array of 7548 rows (stars)
and 100 columns (magnitudes from phase 0 to 1).

Figure 11. Fourier parameters R21, R31, φ21, φ31 as a function of log (Period) for the 3467 fundamental mode Cepheids (Data set II,
Table 1). The changes in the values of the parameters around the period log P = 1.0, 1.5, 2.10 are quite evident.

onances using the PCA. But due to the relatively less num-
ber of data points they did not give any definite conclu-
sions about some of the resonances suggested by Antonello
& Morelli (1996) in the period range 1.38< log P <1.43. By
doing the PCA analysis of same data as used by Antonello &
Morelli (1996), Kanbur et al. (2002) could not find any fea-
ture in that period range. They also put an open possibility
of the presence of this feature in the higher order principal
component plot. Based on the available light curves cover-
ing a wide range of periods, we have plotted R21, R31, φ21,
φ31 versus log P in Fig. 11. It is very evident from the plots

that there is a definite structural change in the Fourier co-
efficients at periods log P ∼ 1.0 and 1.5 the second being
close to the period range 1.38 < logP< 1.43 suggested by
Antonello & Morelli (1996). We see that the Fourier decom-
position parameters R21 and R31 decrease till log P ∼ 1.0,
increase thereafter till log P ∼ 1.5 and after that R21 falls
gradually again till log P ∼ 2.10. Similarly in the φ21 and
φ31 plane, we see a sharp discontinuity around log P ∼ 1.

In Fig. 12 we plot the first eight PCs against log P. For
PC1 to PC4 plots, a discontinuity around log P = 1.0 is quite
visible. PC3 and PC4 clearly show a change around the pe-
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Table 4. The first 8 eigenvectors, their percentage of variance
and the cumulative percentage of variance of 3467 fundamental
mode Cepheids. The input matrix is an 3467× 100 array.

Component Eigenvalue Percentage Cum. Percentage

1 38.71 38.71 38.71
2 32.01 32.01 70.72

3 15.64 15.64 86.36
4 7.40 7.40 93.76
5 3.45 3.45 97.21
6 1.60 1.60 98.81
7 0.69 0.69 99.50
8 0.17 0.17 99.67

riods log P ∼ 1.5 and also around log P ∼ 2.0. Thus, after
independent PCA analysis and using a larger domain of the
data we have find that in fact there are structural changes
around log P ∼ 1 and 1.5 and hence there exist resonances
around these periods. Kanbur et al. (2002), using the PCA
analysis on the Fourier coefficients, did not find any reso-
nances in the period range 1.38 < log P < 1.43. They used
only the first two PCs and suggested that the resonances
may be visible in the higher-order PCs. We have shown that
the higher order PCs indeed show a resonance in the period
around log P = 1.5. It is difficult to pinpoint the exact loca-
tion of the resonance because of the spread in the parameter
space. Model calculations are necessary to confirm the ex-
istence of these resonances. Antonello & Poretti (1996) also
used a number of data points of the longer period side and
found some evidence of a decrease of R21 at longer periods
around (log P ∼ 2). It is difficult to confirm the existence of
such a resonance although we see some change in trend in
higher order PCs around this period.

It is a known fact that the first overtone Cepheids in
the Galaxy, LMC and SMC show resonances at 3.2d, 2.7d
and 2.2d respectively. However by analyzing the Fourier co-
efficients of the 1228 first overtone LMC Cepheids in the
OGLE III database Soszyński et al. 2008 have found that
this behaviour appears twice for the first overtone pulsators
at period ∼ 0.35d and ∼ 3.0d. The short-period discontinu-
ity at 0.35d can be explained by presence of the 2:1 resonance
between the first and fifth overtones in stars with masses of
about 2.5 M⊙ (Dziembowski & Smolec 2009) while the sec-
ond feature around 3.0d is interpreted as the signature of 2:1
resonance between the first and fourth overtones (Antonello
& Poretti 1986).

In Fig. 13, we plot the Fourier parameters R21, φ21, R31,
φ31 versus P for 1148 LMC overtone Cepheids (data IIIA in
Table I). The optimal order of the fit to the Fourier method
has been found to be 12. There is a definitive marked struc-
ture of discontinuity in the Fourier plots at periods around
0.35 and 2.7 days. We now try to find out whether our PCA
procedure can extract the information about these disconti-
nuities, i.e, whether it is able to separate out the resonances.
We carry out the PCA on a 1148 × 100 matrix of 1148
LMC Cepheids with 100 I band magnitudes corresponding
to phase 0 to 1 in steps of 0,.01. Fig. 14 shows the the first
six PCs versus the period. A sharp discontinuity around the
shorter period end near 0.35 day is evident in all the PC
plots while PC2 and PC3 show the change in the light curve

shape of the LMC overtone Cepheids around a period of 2.7
days.

In Fig. 15 we have plotted the Fourier parameters R21,
R31 and φ21, φ31 for 800 first overtone SMC Cepheids (Data
IIIB, Table 1). It is quite evident from the R21 vs. P plot
that there is marked discontinuity around the period ∼ 2.2d.
The same plot leads one to suspect that there could be a
short period resonance similar to LMC Cepheids. However,
the subsequent PCA does not confirm such a short period
resonance for the SMC Cepheids, probably because of the
lack of data for the shorter periods. The PCA of the SMC
overtone Cepheid data matrix (800 × 100) is shown in Fig.
16. The higher order PCs especially PC2 and PC4 show the
resonance around a period 2.2 days.

Lastly we explore the possibility of classification of dif-
ferent classes of variable stars on the basis of the PCA
analysis. Recently, Debosscher et al. (2007) reviewed the
problem of scientific analysis of variable objects and pro-
posed several methods to classify new objects base on the
photometric time series data. Sarro et al. (2009) have done
automated supervised classification of variable stars to the
OGLE database. Having calculated the Fourier coefficients
of all the 10871 stars that we have selected (Table 1) which
includes LMC and SMC RRab stars, LMC RRc stars and
the LMC fundamental and first overtone Cepheids, we plot
the coefficient R21 vs. log P in Fig. 17. The Fourier pa-
rameter is able to cluster the stars into different regions of
the R21 - P space although there is some overlap between
the short period overtone Cepheids and the RRab variables.
The LMC and SMC RRab stars are also indistinguishable.
The principal component analysis has been performed on
the 10871 × 100 array and the plot of PC1 - log P space
shows that the first PC is able to separate RRab, RRc, fun-
damental and first overtone Cepheids. We hope to add more
samples of some other classes of variable classes to carry out
the analysis in a subsequent study.

5 CONCLUSIONS

Fourier decomposition is a trusted and much applied tech-
nique for analyzing the behaviour of light curves of periodic
variable stars. It is well suited for studying individual light
curves as the Fourier parameters can be easily determined.
However, when the purpose is to tag a large number of stars
for their variable class using photometric data from large
surveys, the technique becomes slow and cumbersome and
each light curve has to be fitted individually and then an-
alyzed. Same is true if the aim is to look for resonances in
the light curves in an automated way for a large class of pul-
sators. It is, therefore, desirable to look for methods that are
reliable, automated and unsupervised and can be applied to
the available light curve data directly.

Some attempts have been made in the recent past to use
the well known Principal Component Analysis for the light
curve analysis, but the major drawback of these studies was
that they required the calculation of the Fourier parameters
which then went as input to the PCA. This meant that the
PCA, which was supposed to replace the Fourier decompo-
sition, in fact relied on it.

In this paper, we have presented a new way of calcu-
lating the Principal Components which do not require the
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Figure 12. First eight PCs versus log(period) for 3467 fundamental mode Cepheids (Data set II). Higher order coefficients PC3, PC4
and PC7, PC8 clearly show the discontinuities around the period log P = 1.0 and 1.5. The input matrix is an array of 3467 rows (stars)
and 100 columns (magnitudes from phase 0 to 1).

pre-calculation of Fourier coefficients. The input matrix of
Fourier components was thus replaced by the original light
curve data in the form of magnitude and phase. The tech-
nique has been first tested on a large database of RR Lyrae
stars. It has been found that around 5 PCs are sufficient
in most cases to reproduce the light curves. The results are
compared with those obtained by the Fourier coefficients
alone as well with those obtained by a PCA with Fourier
coefficients as inputs.

Having tested our PCA technique, we applied it to
study the structure of light curves of fundamental and first
overtone Cepheids. By choosing a large data set of a large
range of periods we have shown that the structure of the
fundamental mode Cepheid light curves shows significant
changes around the periods log P ∼ 1 and 1.5. The reso-
nance around the period log P ∼ 1 is well known. Higher
order PCs also show that the behavior of the light curves
changes around the period log P ∼ 1.5 which is close to the
resonance suggested by Antonello & Poretti (1996) in the
period range 1.38< log P <1.43. There is some evidence of

the structural change in the light curve shape around the
period log P ∼ 2.0 also but this can be confirmed only when
longer period data become available.

For the first overtone LMC Cepheids, we find a discon-
tinuity at a shorter period of ∼ 0.35d. Most of the PCs also
show a clear trend of structural changes of the first overtone
Cepheids at this short period. We have been able to find
this feature because of the availability of significant num-
ber of light curves towards the shorter period end of the
LMC Cepheids in the OGLE database. Our technique can
easily find similar resonances in the Galactic and SMC first
overtone Cepheids as and when there is substantial data
available for the short period objects of this class.

Data compression ratio using PCA on the direct light
curve data is enormous, a fact that has great relevance when
dealing with large databases of the future. Also, we have
shown some preliminary results of variable star classifica-
tion for an ensemble of 10871 stars. In a future paper, we
will describe the application of the PCA technique with a
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Figure 13. Fourier parameters R21, R31, φ21, φ31 as a function of log (Period) for 1148 LMC overtone Cepheids (Data set IIIA). Sharp
discontinuities around period P =0.35 and 2.7 are visible from the plots.

Figure 14. First Six PCs versus Period for LMC overtone Cepheids (Data set IIIA). The change in the light curve shape as shown in
Fig. 13 are also seen from the PC plots. The input matrix is an array of 1148 rows (stars) and 100 columns (magnitudes from phase 0
to 1).

larger, more diverse database by looking at the classification
accuracy and errors.
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